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DIVIDE-AND-CONQUER SOLUTIONS OF LEAST-SQUARES PROBLEMS By
FOR MATRICES WITH DISPLACEMENT STRUCTURE* 0b

J. CHUNt AND T. KAILATHt A d odna

Abstract. A divide-and-conquer implementation of a generalized Schur algorithm enables (exact and)
least-squares solutions of various block-Toeplitz or Toeplitz-block systems of equations with O(ca3n log 2 n)
operations to be obtained, where the displacement rank a is a small constant (typically between two to four for
scalar near-Toeplitz matrices) independent of the size of the matrices.

Key words. divide-and-conquer, least squares, displacement structure, fast convolution, Toeplitz, Schur
complements, generalized Schur algorithm

AMS(MOS) subject classifications, primary 65F05, 65F30; secondary 15A06

1. Introduction. In recent years, there has been considerable research on fast al-
gorithms for the solution of linear systems of equations with Toeplitz matrices. The
Levinson and Schur algorithms allow solutions with 0(n 2) floating point operations
(flops) for systems with n X n Toeplitz matrices.

In 1980 Brent, Gustavson, and Yun [ 51 described a scheme for obtaining a solution
with O(n log 2 n) flops. This was based on two ideas-the use of the Gohberg-Semencul
formula [11], [13], [17], [ 26 ] for the inverse of a Toeplitz matrix, and the use of divide-
and-conquer (or doubling) techniques for computing (generators of) the Gohberg-
Semencul formula.

Let x and y denote the first and last columns of T E Rnxn. Then if the
first component of x, say x1 , is nonzero, Gohberg and Semencul [131 showed that we
could write

T-1 =l[L(x)Lr(i-y)-L(Zy)Lr(ZI,,x)], xI #0,
Xl

where !, is the reverse-identity matrix, Zn is the shift matrix,

/ ]I ' 1
I 1 0.

and L(v) is a lower-triangular Toeplitz matrix with first column v. The significance of
the Gohberg-Semencul formula in the present application is that the product of a vector
and a lower- or upper-triangular Toeplitz matrix is equivalent to the convolution of two
vectors, which can be done using 0(n log n) flops (see, e.g., [4]).

Brent, Gusta son, and Yun used a divide-and-conquer scheme fora certain Euclidean
algorithm to factorize row-permuted Toeplitz matrices (i.e., Hankel matrices), and to
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obtain the vectors { x, y } of the Gohberg-Semencul formula with O(n log 2 n) flops.
Later Bitmead and Anderson [3] and Morf [21] used another approach based on the
displacement-rank properties of matrix Schur complements, to obtain similar results;
while this approach allows for generalization to non-Toeplitz matrices, the hidden coef-
ficient in their proposed O(n log 2 n) constructions turned out to be extremely large (see
Sexton, Shensa, and Speiser [ 25 ]). Later Musicus [ 22 ], de Hoog [ I I], Ammar and Gragg
[21 used a more direct approach based on a combination of the Schur and Levinson
algorithms to obtain better coefficients; in particular, Ammar and Gragg made a detailed
study and claimed an operation count of 8n log 2 n flops. With this count, the new (called
superfast in [ 2 ]) method for solving (exactly determined) Toeplitz systems is faster than
the one based on the Levinson algorithm whenever n > 256. We should mention here
that Schur-algorithm-based methods are natural in the context of transmission-line and
layered-earth models, so it is not a surprise that similar techniques were also conceived
in those fields (see Choate [7], McClary [20], Bruckstein and Kailath [6]). A good
source for background on the Levinson and Schur algorithms, transmission line models,
displacement representations as mentioned and used in the present paper may be [14].

The method we have taken in this paper is in the spirit of the generalized Schur
algorithm (see, e.g., [8], [91). Our algorithm can be applied to non-Toeplitz matrices,
and is simpler than the methods of Bitmead and Anderson [3] or Morf [21]. Furthermore,
we can readily handle matrices such as (TTT) -' and (TT T)-'T, where T may be a
near-Toeplitz matrix or a rectangular block-Toeplitz matrix, or a Toeplitz-block matrix;
in particular, therefore, we can also obtain the least-squares solutions of overdetermined
Toeplitz and near-Toeplitz systems with O(n log 2 n) flops. Our algorithm is closely related
to the algorithm of Musicus [ 22 ]. However, our presentation is conceptually much simpler
(especially for the non-Toeplitz cases treated in [22 1) than previous approaches; in par-
ticular, we do not use the relationship between the Schur algorithm and Levinson al-
gorithms needed in [ 2 ], [11 ], and [ 22 ].

An outline of our approach is the following. For a matrix E,
E,, El,2

( 1 ) E = [ E, E2 .2  E, nonsingular,

the Schur complement of E1,1 in E is

S -E 2,2 - E2.1 ETI E1.2

Note that matrices such as
(2) Sim T- ',  S2ffifi( TrT) -I  S3m(T TT)-IT T

can be identified as the Schur complements of the northwest blocks in the following
extended matrices:

(3) EI=[T OI, E2=[T T T I E 3 [ T TT  TT].

Now the matrices E in (3) have the following (generalized) displacement representation,
for suitably chosen matrixes { Ff, Fb }:

iE= K(xj,Ff)KT( yj,F b),
' I- I

where K(xj, Ff ) and K(yj, Fb) are lower triangular matrices whose j columns are
(F1 )( j - ' x and (Fb)( j - I)y,, respectively. The smallest possible number a is called the



130 J. CHUN AND T. KAILATH

displacement rank of E with respect to { Fy, Fb }. For an example, let T be an m X n
scalar Toeplitz matrix, with m -n. Then the matrix E 2 has displacement rank four with
respect to { F, F), where F --- 1, and has a displacement representation [15],

2 Tr4T(1 0*(4a) E2--- 1 K(yj, F)K xi, F) - i : K(yi,F)Kr xi,F), Yi" 10 -jxi.
i=1 iff3

If we define x f IwT, vr], note that the matrix K(x,, F) in (4a) has the form

I L(w,) 0 n
(4b) L[L(v ) 0]JER '2A OERRnXR

where L(wj) and L(vi) are lower triangular Toeplitz matrices with first columns wi
and vi.

Given a displacement representation of E, we use a certain generalized Schur al-
gorithm (see § 2) to successively compute displacement representations of the Schur
complements of all the leading principal submatrices in E. For the above example, n
steps of the generalized Schur algorithm will yield

0 =2 T(4T

(TT T )-' = j K(ui,F)K(ui,F) - 3 K(ui,F)K(ui,F),

where the top n elements of ui are zero. Therefore, if we denote the bottom n elements
of ui as u2,,, we can have the displacement representation

2 4

(TTT) -1 = T L(u 2 )L(u 2 ) -  L (u2)

Now, the generalized Schur algorithm, which is a two-term polynomial recursion,
can be implemented in a divide-and-conquer fashion with 0(a 3f(n) log n) flops, where
f(n) denotes the number of operations for the multiplication of two polynomials. There-
fore, if the multiplication of two polynomials is done again by divide-and-conquer, i.e.,
by using fast convolution algorithms, then the overall computation requires 0(a 3n log2 n)
flops. Once we have a displacement representation of the desired Schur complement S,
the matrix-vector multiplication, Sb, can be done with 0(an log n) flops using fast con-
volutions. As an example, we can obtain the least squares solution for the Toeplitz system

Tx=b, TERmn, m2_n

as follows:
(i) Form TTb using two fast convolutions,

(ii) Obtain a displacement representation of(TTT) -I using the divide-and-conquer
version of the generalized Schur algorithm,

(iii) Form (T T T)- (Trb) using eight fast convolutions.
If we had obtained the displacement representation of (TTT)-' TT directly (using E 3 ),
then step (i) above would not be needed.

2. Generalized Schur algorithm. After a brief review of basic concepts and defini-
tions, we shall describe the generalized Schur algorithm of references [ 8 ], [ 9 ], and [ 15 J,
but in a polynomial form important for the divide-and-conquer implementations. We
shall need to recall some definitions and basic properties.
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Generators of matrices. Let Ff and Fb be nilpotent matrices. The matrix

V(Ff,Fb)A =A - FfAFbT

is called the displacement of A with respect to the displacement operators { Ff , Fb}.
Define the (Ff , Fb)-displacement rank of A as rank [V(Ff,Fb)AI. Any matrix pair
{ X, Y } such that

(5) V(Ff, Fb)A =X Y T ,  X ,'[XJX2, "' xa], Y-M [Y, Y2, "' YJ

is called a (vector form) generator of A with respect to { Ff , Fb }. The generator will be
said to have length a. If the length a is equal to the displacement rank of A, we say that
the generator is minimal. A generator such as Y = X1, where 2 is a diagonal matrix
with I or - 1 along the diagonal, is called a symmetric generator.

The following lemma 115 1, [161 establishes the connection between generators and
displacement representations.

LEMMA. Let E be an m X n matrix. If Ff and Fb are nilpotent, then the equation
Vf,Fb)E = 2,a xjyT has the unique solution E = 1, K(x,, Ff)KT(yi, Fb), where
K(xj, Ff ) -= [x, Ffxi, ... , Ff <n-' )xi] andK(yj, F") - jy,, Fbyi, ... , Fb ( n - I)yj].

Choice of displacement operators. The generalized Schur algorithm operates with
generators, and needs O(amn) flops for sequential implementation and O(a 3n log2 n)
for divide-and-conquer implementation. Therefore, for a given matrix A, we should try
to choose the displacement operators that give the smallest a. If the matrix A is an n X
n Toeplitz matrix, the appropriate displacement operator F is Z,, an n X n shift matrix.
If A has some near-Toeplitz structure, then F would have forms such as

n
F= ZG Z,., F= Z,, F= ZI,

where G denotes the direct sum, Z,, ( Zm -'- 1, and G)?=. denotes the concatenated
direct sum.

Example 1. Let T = (tj-) be an m X n pre- and post-windowed scalar Toeplitz
matrix, i.e., tjj = 0 ifj > i or i > m - n + j with m _ n. Then it is easy to check that
the matrix C = (ci_ j) - TTTis also an (unwindowed) Toeplitz matrix, and with respect
to {Z. G) Zn, Z, G Z}, E 3 in (3) has a generator {X, Y } of length two, where

x 1 = [CoC, "- cn_ 1,- 1,0, ".- Ol Ic02,

X2 = [0,C1, -- c._ 1, -l,0, .-. OTrc0112 ,

y, = [Co, C1, -'- , _ I 1,to,1 I, ' ft,. , , ... ,O Ir c012,

Y2= - [ 0 , C, , -. c._ 1,0to "'" tM_,O, "",OJ/c1/2 . ]

Example 2. If T is a Toeplitz-block matrix, i.e.,

T,,, T1.2• TI.N ]
(6) T= T2. T2.2 " T2.N eRm×., T1j=scalar m,Xn, Toeplitz matrix,

[TM., ITM,2 TM.,Nj
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then for the matrices E in (3), we choose [9], [15] the following displacement operators:

(7a) E: Ff= [D Z. Fi, Fb=[Dz, IF,, m = n,

(7b) E2: Ff= GZn,]GFi., Fb=[G Z-,® FI,
li= I i=I

(7c) E3: Ff = (D Zn]()Fi, Fb=[i= znj)[l ZmGj,

where F, can be either Z,, or 0v= , Z,,. However, for the divide-and-conquer implemen-
tation, we prefer to choose ®= , Zn,; see the remark in § 4.

Example 3. On the other hand, if the matrix T in (3) is a block-Toeplitz matrix
with P X f blocks,

Bo B-1  B-N+1

(8) T B, B0  B-N+2 ERr"", BkER#×#, m-Mf3, n-N3,

BM-1 BM-2"B-N+M

then for the extended matrices E, we should choose [8, [ 91 the displacement operators

(9) Ff=Zan O)Zn, Fb=ZGZnM,

where for El we assumed that T is a square n X n matrix.
Generators of the above and other extended block-Toeplitz or Toeplitz-block matrices

can be found in [ 8].

Polynomial form of generators. In general, the displacement operators Ff and F b

for both extended b!ock-Toeplitz matrices and extended Toeplitz-block matrices have
the form

N N
(10) F= (D) Z",, n -  ni.

i=l i=1

We shall say that the displacement operator F in (10) has N sections. One of the key
operations in generalized Schur algorithms is matrix-vector multiplication Fv, i.e., a
sectioned shift operation. With the polynomial representation of vectors, the shift oper-
ations has a nice algebraic expression. For a given vector v, let v( z) denote the polynomial
whose coefficient for the term z' is the (i + 1 )st component of the vector, i.e.,

(11) V = [V,VI,V2 , ., Vn- I ]T "(Z) = VO + VIZ + V2Z2 Vnl- Z n - .I

Then,

ZnV- v'= [0,VO, V , " ,vn- 2]T_-v(z)z mod zn.

In general, for the matrix whose displacement operator is the F in (10), let us define
integers { bi} by

6i= nk, 61<62<--- <bN.
k-I

Let v(z) and 0(z) be polynomials of degree less than or equal to n - 1, and define the
degree at most (n - 1) polynomial, v(z), by

(12a) v(z) =v1 (z) + z"v 2(z) + zv 3(z) +'" + z6N 'vN(Z).
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Given two polynomials v(z) and O(z), and the displacement operator F in (10), the
(polynomialform) displacement operator ®F is defined by the following operation:

(12b) v(z)®FO(z)-r(z)-r(z)+z'r2(z)+z2r (z)+ +zaN-Irn (z),

where

(12c) ri(z) -Vi(z)0(zf) mod zni,

i.e., ri(z) is the polynomial vi(z)O(z,) after chopping off the higher degree terms, so that
ri(z) has the degree at most (ni - I).

Let

X= [xt,x2, "' ,xa], Y= [y1,y2, "'YJ]

be a generator of a matrix A with respect to certain { Ff , Fb }, and let

xi+-x(z), yi-yi(w).

Then we call the pair of polynomial vectors {X(z), Y(w) }, where

X (Z)-[xj (z), -2 (z), ""- , XJZ)]1, Y(w)=-[Y](w),YA(w), ." ,(W)]1,

a (polynomial form) generator of A, with respect to (polynomial form) displacement
operator { ®F, ®OF" .

Example I (continued). The matrix E3 in (3) has a generator { X(z), Y(w)} with
respect to {®OF, DFb}, where Ff= Zn ( Zn, Fb = Zn ® Zm, and

x1(z) = [Co + ' + - z - I - :]co ,

X2(Z)
= [CZ+ CZ2 + + Cn IZ

- I -  1Z n Ic O /2,

y( w) = [ Co + C,W+• + Cn -+town + tW++ +tm_1wm]cO-/
2
,

y2(W) = -[Cl W+" + Cn _Iw" - I + twn + I + + tm-nWm]C6I/ 2 .

Also note that

X| (Z)®DIZ= [CoZ + C2 + " +c ,- 2 Z- ']Co1 2,

yi (W)®FbW

=[cow+CIW 2 + +Cn_ 2wn-t+toWn+I +tlw+ 2 +' '+tm-nWm+ ]C'1/2. ]

Next we note that for given vectors a and b such that a 'b :0 0, we can always find
18 ] matrices 0 and 41 such that

(13) aT8=[a',0,0, . ,0], b T*=[b',0,0, ... ,01, O.T=l,

and therefore, a Tb = a, b'. We define polynomial matrices @(z) and *(w) by

z w(14) @(z)- *(w[1

We also remark that if a = b, then we could choose ,'(w) = 8(w), and if b = Za,
where I - 1,p - lq, then 4f(w) = O(w)Z, so that we only need to find, and post-
multiply by, e(z).
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Generalized Schur algorithm. Let a matrix E have a generator { Xo(z), Yo(w) } with
respect to {®Ff, ®b 1, and define Ejj by

E [ E,, E1_2 1 R ,
E2., E2.

where El1 is a k X k strongly nonsingular matrix, i.e., the one with all nonsingular leading
submatrices. The k-step generalized Schur algorithm 181, 191, 1151 presented below in
polynomial form gives a generator of the matrix

[0 0],S__E2.2_E2,.,.'E,,2ER,,mk~xC,_k)"

with respect to { ®F, ®Fb}, or equivalently, a generator of S with respect to
I ®Op, ®pb }, where Ff and frb denote the trailing square submatrices of size (m - k)
and (n - k) of Ffand Fb, respectively.

ALGORITHM (k-step generalized Schur algorithm).
Input: Generator of E, { Xo(z), Yo(w) }; displacement operator { ®-, ®(F };

Number of steps k.
Output: Generator of S { Xk (z), Yk(w)}
Procedure GeneralizedSchur

begin
for i := 0 to k - I do begin

aT:= [z-iXi(z)]=o;
bT:= [z-'Y(z)lz=0 ;
Find O,(z) and ',j(w) to transform ar and b Tsuch as ( 13);
X,+I(z) = Xi(z)®Oi(z); Y,+I(w) = Y(w)®-I',i(w)

end
return {Xk(z), Yk(w)}

end

Remark. The polynomial vectors, X(z) and Yi(w), have degrees m - I and
n - 1, respectively, for all i. Each step eliminates the nonzero lowest degree term, and
therefore the terms of Xj(z) and Y,( w) whose degrees are less than Z' and 1 are zeros.

By applying the generalized Schur algorithm we can obtain generators, or equivalently
displacement representations, for various interesting Schur complements.

3. Divide-and-conquer implementation. The (sequential) k-step generalized Schur
algorithm in § 2 can also be implemented efficiently using the divide-and-conquer ap-
proach. We shall only explain how to find Xk(z); essentially the same argument applies
for Yk(w).

Let us define 0..(z) and X.q(z) by
Op.q(z)-O @z)0,,+ I (Z) •... Oq(z),

Xp.q(Z)-Xo:q(Z)®fOo:p, :(z), Xo:q(z)-X o(z) mod zq+

where 0 6 p 6 q. The polynomial matrix O,.q(z) has a degree q - p + I. The polynomial
vector Xp.,(z) has degree q, and is obtained by dropping from Xp(z) all terms of degree
higher than zq. Also note the useful properties,

[x(z)®FOI (Z)J®r02(z) = x(z)® , (z) 2(z)],

1X ,(z) +x 2 (Z)J®FO(Z) = [X,(Z)®F(Z)] + [X 2(Z)®'G(Z)I.
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These properties and the fact that Op:,(z) is completely determined by X.,q(z) allow a
divide-and-conquer implementation of the generalized Schur algorithm.

Given X,.q(z), we can compute OB.q(z) as follows. If p = q, then we are successful,
and compute 19.p(z) = Op(z). Otherwise, we choose an "appropriate" (see § 4) division
point r such that p < r < q, and try to solve the smaller subproblem of finding .,, (z),
given Xp., ,(z). Once we know Op:, (z), we can compute X,.q(Z) by

(15a) Xr:q(Z)= X:q(Z)®Ff0O:r- I(z) = [X:q(Z)DFf0o:p- I (Z)J®FfO,,- I(z)

(15b) = X,,:q(z)G,)Ff,.., -(I).

Now we again try to find 0,:q(Z) given X,:q(z). After we obtain Or:q(Z), we can combine

the two results, 0,_ -(z) and O,:(z), by multiplication,

(16) O@.q(Z) = 0p, -i(z)Or:q(Z).

Programming details of the above recursive generalized Schur algorithm are shown in
the Appendix.

The previous recursive description can be visualized nonrecursively using trees
(See Figs. I and 2). Each node in the tree is annotated with the rules: "find," "apply,"
and "combine,"

fp.: Find Op. , (z),

ag.q: -I'rq(z) := X,:q(z)) FO p. -, (z),

Cr.q: E.)p(z):=Op:, i(Z)Or:q(Z).

We traverse the tree in post-order (i.e., follow the order labeled on each node of the tree),
and evaluate the rules.

~22

C1.3

4 C1 \ C2 .3 12-21

1 2 3 5 6/ 7 8 1

fo al A:t 6.3 f2:2 a2,3 /3:3 a7

FIG. I. Sequence of computlaions for Example 4.
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C09

CO 1 ao.9 4

C24 12

4 C o .. , ' .C 1 4 2

5I34
a2.4

1 2 3 6 8
f0 a2. fl:l A2 4:4

f3:3 a3:4
9

FIG. 2. Sequence of computations for Example 5.

Now, we shall consider two examples in detail.
Example 4. Pseudoinverse of pre- and post-windowed Toeplitz matrices. Consider

the matrix E3 in Example 1, where

16 8 4 1 3 2 1 1 -1 0 0 0
TTT 8 16 8 4 TT= 0 3 2 1 1 -1 0 1

4 8 16 8 0 0 3 2 1 1 -1 0

1 4 8 16 -0 0 0 3 2 1 1 -1

We would like to find a displacement representation of (T T) - TT. This can be done
by the four-step recursive generalized Schur algorithm. The input to the algorithm is a
generator {Xo(z), Yo(w)} of

E3 =[T TT]

with respect to {®f, ®Fb}, where Ff  ZG) Z,,, Fb = Z® Zm. The output
{X4 (z), Y4(w)} is a generator of(TTT)- TT with respect to {®z., Oz.,}. The com-
putational sequence is illustrated in Fig. 1, where it is assumed that the division points
were chosen successively by two, one, and three.

[1] oo:o(Z) 0 (z][z =] becauseXo:o(z)=[4,0].

[2] ao: :X,:I(z)=Xo:(z)(eFfOo:0(z)=[4+2z,2z]®FfEo:o(z)=[4z,-2 z].

2 +
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15] 2

[5] ao:3 :X 2 :3()=X: 3(z)®Ffoo:l()=- '[3z 2 +3z 3 /2,- 3 141.

2
[61 f2:2:)2 2(Z) = 0][ 1 because X2:2(Z) = 3[3z,0.

6 -1 1 ]

2
[71 a 2 3 :X 3:3(Z)=X 2 3(Z)F0 2 :2 ()=-[3z, Z3/4].

81 f3:3033(Z) 
-[ [z

12 .[z z/,12 irz
[9] C2 3:02"3 (z)=@2"2(Z)e 3 "3(z)= 4 1]"

24 .[ Z4 _-z2/24 Z31/12 -z112
1101 c°:3 :0 0 :3(Z)0o(z)%:3(Z)= Vi V." -z3112+z/12 -z2/24+1

[11] ao:7 :X 4 :7(z)= [4+2Z+Z 2 +Z 3/4-Z 414,2Z+Z2 +Z3 /4-Z 4/4®FfOo:3(Z)

= [(4+2z+ 2 +z 3 /4,2z+ 2 +z 3 /4)- z 4(/, )Ffo0:3(Z)

= -z 4[( ,)Oo: 3(z) mod z 4 ]

6z 4

- -_-=[z/12-z 2 /24-z 3 /2, 1 -z/2-z 2 /24+z 3/12].
VIV43

Because TTT is symmetric, 'I'o:3(W) = 00:3(w) 2, where Z; 1 - 1, and therefore,

Y4:13(w) = [(4 + 2z+ z2 + z 3/4)+ z 4(3/4 + z/2 + z 2/4-z 4 /4),

(2z + z 2 + z 3/4) + z 4(3/4 + z/2 + z 2/4 + z 3/4 - Z4 /4)]®Fb O:3( w)2;

- z46_
= -- 6 [14z+ z2/24 -3z 3/2 +49z 4/24 + 1I z5 /8 + 13z 6 /24 + 3z 7 /2,

-3-z/2+z 2/8 -2z 3/3+ 11z 4/8-13/24z5-z6 /8-z T/12].

Therefore,

(TTT)-T T= 2 [L(x)LT(yl)+L(x 2)LT(Y 2 )], Y= 6-,

where L(x) and L(y 1 ) are the lower triangular Toeplitz matrices whose first columns
are xi and y,, respectively, and

x1 -- [0, -A A 21

X2= [ , J, , - i I,
Y, = [01 a N 1 91 r93.,;, , -- 4 V, Y, j, TtI

y2= [ 3, I,,',- t 13 1 1]7r
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Remark 1. For a symmetric generator of length two with = I, the 2 X 2 polynomial
matrix O(z) in (14) can have the form (hyperbolic reflection)

=[ chz shi, -sh, = .O z -shiz -chill

Let

fOIAz) 01,2(Z)]
Op:q(Z)-Op(Z)Op+ (Z) ... Oq(Z)- [ 02,(z) 02(z)102 ()0 2.2 (z)J"

Then, by induction, we can easily prove that

2q-,+ I1 1o(Z-I)=(l )q-p+ '02,2(Z), Zq-p+ '01,2(Z-') =-I )Qp+ I02 (Z).

Therefore, we need to compute and store only two entries of Op:q(z).

Remark 2. For an unwindowed scalar Toeplitz matrix, the matrix E 2 in (3) has
displacement rank four, whereas the matrix E 3 has displacement rank five. Therefore,
when we solve Toeplitz least squares problems, it is more efficient to find a displacement
representation of (TTT)-1 rather than of (TTT)-TT. With the notation in (4), the
matrix E2 for an unwindowed scalar Toeplitz matrix T = (t, - j) E R (m > n) has a
generator [ 15 ],

w,=TTt/1tII, W2 = t2, w 3 ZnZ T  W4 = Zl,

ti -[to, t, "", t,- I] t2 -- [0, t-1, -.. ,h -- t, t, . -, A,

vI =v 3 =el/IItiII, V2 = V4 =0,

where 1 denotes the Euclidean norm, and el is the vector with one in the first position,
and zeros elsewhere.

Example 5. Displacement representation for the inverse of a Sylvester matrix. Let
T denote the following Sylvester matrix,

2 0 0 1 0
1 2 0 2 1

(17) T- 3 1 2 1 2
0 3 1 1 1
0 0 3 0 1

and suppose that it is desired to obtain a displacement representation of T'. Then the
appropriate extended matrix is

and it is easy to see that the following {Xo(z), Yo(w) } is a generator of El with respect
to { ®Ff, ®Fb}, where Ff = Z5 G Z 5 , Fb = Z3 ® Z 2 0 Z5 ;

Xo(Z)[XI(z),xA(z), x3(z)l, Yo(W) - [y,(W),Y2 (W),YA(W)l1,

(19a) x(z)=2+z+3z2 -z 5 , x 2(z)=l+2z+z2 +z 3 -z 8, x 3(z)=l,

(19b) y(w)= 1, y 2(w)= w 3, y 3(w)= w 5.

_ _ _
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Now the five-step recursive generalized Schur algorithm gives a desired generator of T-1 ,
with respect to { Z5 , Z5 }, and a possible computational sequence is shown in Fig. 2,
where the division points are chosen successively as two, one, three, and four.

[11 fo:o: 0o:o(z) = 0 1 0 Io:o()= w/2 1 0.
0 Lw/2 0 1

[21 ao:j:Ximi(z)=[2z,3z/2,-z/2], Y:1(w)=[w,O,O].

4 - 4 w 0 0[3] f1:1:01:(z) = 0 1 0 *I:1(W)=-  3w/4 1 0
0 -w/4 0

Si 2 -3z/4-1/2 z/4-1/2w

[4] Co:l :@o:z) = 01 0 ,
10 0 1

[~
*t'0Aw)= W /2+3w/4 1 0

w 2/2-w/4 01

[5] ao:4 : X 2-4 (z)
= [2z 2 +Z 3 +3z 4,-5Z2/4-5z3 /4,-5Z2/4+3z3/4],

Y2 :4 (w) = Y 0:4 ( W)(Fb40:I (W)

= ( 1,0,0) 0:1 (W) mod w3 ] + w3 [(0,1w,0)'O:l(W) mod w2]

= [w 2 +3w 4/4, w 3,0].

5 1 001 .[6] f2 :2 :O2:2 (z)= 0 1 01, * 2:2 (w)= -5w/8 1 0
10 0 1 L-5w/8 0 1

[7] a 2 :4 :X 3 :4 (z)= [2Z3 +Z 4 ,-5z 3 /8+ 15Z4 /8, 11z 3 /8+ 15z 4 /8],

Y 3 :4 ( w) = Y2 :4 ( W)®OFb*2:2( W)

= [(w 2,0,0)' 2:2(w) mod w 3] + w3 [(3w/4, 1,0)I,2:2(w) mod W2]

= [-5w 4/8, w 3,01.

ro0'1 1 16w/S 1 0]
= (00 0 ,J 1L -11w/501]

[9] a3:4:X4:4(z) = [-5z4/8,7z 4,6z4], Y4:4 (w) = [w 4, -5w 4/8,01.

[ z/(2V ) 28/(5V-2) 
6

[101 C4 : 4 0 4 :4 (Z) -5z/(16V2) 1/(2f'2) _4 ,

0 0 14

r w(2 )S 5 0(16 ) i0
4I,4:4(W) =-28w_/,_(2) 1/(2V/2) 0

-121/2w5 0 1
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Operations [ 11 ]-[ 13] are obvious. After evaluating, C3:4 , C2 :4 , and C0:4 , we obtain
00:4(z) and *0: 4(w), and finally,

[14] ao:9 :Xo:9(Z)= [XI(Z),X 2(Z),X 3(Z)]®FEo:4 (Z)

= z[( -l,-Z 3,)®Ff 0:4(Z)]

= z[( -1,-z 3, 0)0 0 :4 (z) mod z 5] = zS[u,(z), u2(z), u3(z)J,

where
u, (z) = -z/ (21(2) -2 /2(2f/2) + Z3/ f2 + Z4/ t2,

u2(z)=4/(512) + 4z/ V2 + 16Z/ (5 2)- 28z']( 52) - 28Z4/(50),

u3(z) = 2/5 + z/5 + 2Z 2/5 + 35 - 6z 4/5.

YO:9(w)= [YI(W),Y2(W),Y 3(W)OF@b*o: 4 (W)

= w [(0,0, 1 )®GP'0:4(W)] = W5 [VI(W),V 2(W),V 3 (W)],

where

v 1(w) =-12V2w/5 + 12w2/(5V2)+ 12w3/(5f/)- 12w4/(5V2),

v2(w) = -w/ V2 + w2/(2) + w3/(2) - W4/(2

v 3(w)= 1.

Therefore,

T = L(u3 )L T(v 1 ) + L(u 2)LT(v 2 ) + L(u 3)LT(v 3),

where uj and vi are the vectors whose jth component is the coefficient of z - and w -

of u,(z) and vi(w), respectively. El
Remark 3. If we had chosen the displacement operator Ff = Z5 G Z3 G Z2 , F" =

Z 3 ( Z 2 0 Z5 for the matrix T in (17) we would have the same generator (19) for El,
but the obtained generator of T would be the one with respect to { Z3 0 Z 2, Zs } rather
than with respect to { Zs, Z 5 }. The displacement ranks of T-' with respect to both
displacement operators are two, but the above procedure gives nonminimal generators
of length three.

Remark 4. The following extended matrix:

(20) [ 1 ], T= Sylvester matrix

also has a displacement rank of three. We could as well obtain the solution T-'b directly
by applying the recursive generalized Schur algorithm to (20), the last column of X,
where { X, y } is the computed generator of T- h with respect to { Z,, 1 }, can be shown
to be the solution T-b.

4. Polynomial products with fast convolutions. The product of two polynomials of
degree d, and d 2 can be performed efficiently using d - d, + d 2 + 1 point fast cyclic
convolution algorithms [4]. A d-point fast cyclic convolution needs O(d log d) flops.
Among others, Fast Fourier Transforms (FFTs)can be used for convolutions, and Ammar
and Gragg [2 ] carefully examined the use of FFTs for a doubling algorithm for square
Toeplitz systems of equations. We shall only consider the subtle complications that arise
in the recursive generalized Schur algorithm in this paper.
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The polynomial matrix-matrix product of( 16) needs a 3 of q - p point cyclic con-
volutions. The polynomial vector-matrix product of (15b) has a 2 of scalar polynomial
products of the form, x(z)®FO(z), where x(z) is a polynomial with nonzero terms of
zp, zp + , _ •, zq.Let us assume that

0<61<. < 6"'" <tp < 1, 1 < ... < 6,s5r < 6,+ I < ... < 6,_5q < ,+ I < ... < <6N.

Then

(21a) x'(z)-x(z)®FrO(z)

=[z61xl+ I(z)+ z" 'xl+ 2Wz) + "'" , + x+ I(z)

(21b) + ... + z6'x, + IW(z)I®FO(z)

(22a) = [zx+ I(z) + + z6'-'X(Z)]®FfO(z)

(22b) + zN'x + I z)OWz) mod zn +  ]

(22c) + z 6, +[xS+ 2(z)O( z q
) mod zn +2]

(22d) + z" [X, + I z)O(z ) Mod znj + ].

The terms in (22a) do not need to be computed because these terms will be summed to
zeros after adding all the partial sums in the vector-matrix multiplication of ( 15b). Recall
that x,(z) has degree ni, and 8(z) has degree 3 (q- p + ". Therefore, the product x, (z)O( zl)
from (22b) to (22d) can be performed by

2ni+ 1 point cyclic convolutions if degree [0(?)] _ degree [x,(z)],

ni+ # (q -p + ) '+ 1 point cyclic convolutions if degree [O(za)] <degree [x,(z)].

Remark 5. Note that two d/2 point convolutions take cd log (d/2) flops if one d
point convolution takes cd log d flops. Therefore, the polynomial product (21 ) is more
efficient for the displacement operator F/with more sections, because such displacement
operators break a long convolution into many smaller convolutions. Therefore, for a
given matrix we prefer to choose a displacement operator with as many sections as
possible, while keeping the displacement rank minimal. Also we remark that the first
and last terms (22b) and (22d) need smaller point convolutions.

If the dimensions of the matrix are powers of two, then we can always choose the
center division point r = (p + q)/21. This balanced division (or doubling) gives the
least number of computations, in general. For this case, let m - p - q, and T(11) denote
the number of computations for one recursion. Then

T(i):-2T (/2)+ W(i7 ), W(W)-O(a 3 7 1og09 ),

and therefore, we can show [1 ] that the k-step recursion takes

T(k):_ O(a3 k log2 k).

However, in most cases the doubling is not possible, and for such circumstances,
the desirable choice of r is such that r - p and q - r + I are highly composite numbers
(so that fast convolution algorithms can be applied efficiently), as well as r is close to
(q - p)/2 (so as to achieve balancing).
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Matrix-vector products using displacement representation. The final step of finding
solutions for linear equations is the matrix-vector multiplication Sb, given a displacement
representation of S c R'n

(23) S= K(xj, Ff)KT(yi,Fb),
1=1

where the length a is a multiple of the block size i3, a = f6, say, and

M N M N

Ff = zG Z,,, Fb = ( Zf,, m= im, n n,.
i= 1 i=1 il i=1

The expression in (23) can be rewritten in the block displacement form

a

(24) S= K#(Xi,Ff)KT(Y,,Fb), XiRrx a , YirR nX,
i=1I

where
(25a) KS( Xi, Ff ) =[Xi, FfXi,Ff2xi, '" Ff (m 1 ) - IXj]E R m x× n,

(25b) K#( Yj, Fb) = [ Yi, Fb Yi, Fb2 Y,, "'" ,Fbj(n ) -1 YJiER".

Furthermore, because Ffand F b have M and N sections, respectively, (25a) and (25b)
have the forms

FKp(X 1 ,Z M-6) 0 - K#(Y 1 ,,Zng) 0]
K,6(Xi,,Ff )= Ks(X2,,Z M2)  0 K#( Yj, Fb)= K#( Y2.,,Z no2) 0

K#(XM~i,Z# ) 0 K#( YN, Zn") 0

where Ku(X, Z #) is the block lower triangular Toeplitz matrix with the first column
block X. The matrix 0 denotes a null matrix of appropriate size such that K#(Xi, Ff)
and K#( Y7, Fb) are n X n and n X n matrices, respectively.

To see how to use convolutions for the product

K# ( X, Ff ) KT( Yj, F b)b

it is enough to consider matrix-vector multiplications of the form KP( X, Z )b. Note
that K#(X, ZO)b can be expressed as sum of # products of scalar lower triangular Toeplitz
matrix and vectors. As an example,

ao c0  1 [,o
a, c, b
a 2 C2 ao c o  b 2

a3  c3 a, c, b3
(26)

a[ ao 1 + co Co 1
a2 a, ao b 2  c2 cI CO b3

a3 a2 a, ao 0 c3 c2 cI Co 0

The multiplications in the right sides of (26) can be done by fast convolutions, and

therefore, so can the multiplication Sb.

5. Concluding remarks. We have presented O(a 3n log 2 n) algorithms for the de-
termination of exact and least squares solutions of linear systems with matrices having
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(generalized) displacement rank a. Such algorithms for exact solutions have been studied
by several authors, most recently by Ammar and Gragg [2] for Toeplitz systems. They
also made a very close study of the implementation of the convolution operation in an
attempt to obtain the smallest coefficient. Although we have not attempted so close an
operation count for the more general algorithm in our paper, the hidden constant in the
operation counts for solving Toeplitz least squares problems is quite high because a =
4 for the matrices E2 or E3 (see (3)) with a full rectangular T. Also we conjecture that
our algorithm suffers numerical stability problem when ElI in ( I ) has a leading principal
submatrix that is close to singular; nevertheless we might hope that numerical refinements
devised for the Schur algorithm (see, e.g., Koltracht and Lancaster [ 18 1) may be carried
over to the divide-and-conquer framework as well.

We also mention that the fast algorithms for Hankel and close-to-Hankel ma-
trices in [101 can be implemented with divide-and-conquer fashion using the spirit in
this paper.

Appendix. We shall summarize the explanation in § 3 using a Pascal-like recursive
procedure. First, note that the polynomial 0p,(z) (and *I'p(z)) has q - p + 2 terms.
The first column of Op,.,(z) has terms ranging from degree z to zq- p+ ', and the other
columns have terms from I to zq- P.Hence, by shifting the first column by one position,
we can store 0 .q(z) and ''q(Z) in the array "Poly" from p to q slots inclusive:

Poly: array [l..a, l..a, 0..MAX-I] of record
0: coefficients;
V,: coefficients

end;

The computation of Op1 .q(Z) is sequential, i.e., once we compute @,,(z), we do not need
to keep Op.- I(z), and therefore, the array "Poly" can be kept as a single global variable.

The polynomial vector X,.(z) has q - p + I terms, and therefore, can be stored in

an array type GENERATORS:

type
GENERATORS = array [1 ..a, 0..MAX- lJ of record

x: coefficient;
y: coefficient

end

However, Xpq(z) cannot be kept as a global variable, and local copies should be maintained
until we compute X.q(Z).

Now we can describe the recursive generalized Schur algorithm as follows.

ALGORITHM (recursive k-step generalized Schur algorithm).
Input: Generator of E, { Xo(z), Yo(w) }; displacement operator { ®Ff, ®F };

Number of steps, k.
Output: Generator of S, I Xk(z), Yk(W)};

procedure RecursiveSchur
var

G, LowerG: GENERATORS;
begin

Find(0, k-I, G);
Apply(0, k, n, G, LowerG);
return(LowerG)

end
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The procedure Find (p, q, G) computes e,.q(z), and *gq(W) given {X,.(z), Y,.(w)}
and the procedure Apply (p, r, q, G, LowerG) returns LowerG = X,:q(Z), Y,:q(W)

given G = I{Xgq(Z), Y,q(W)}

procedure Find(p, q: index; G: GENERATORS);
var

r: index;
G, LowerG: GENERATORS;

begin
if p = q then begin

Compute 0B.q(z) and 'l'jq(W);
return

end
r: appropriate integer close to r(p+q)/21;
Find(p. r-1, G);
Apply(p, r, q, G, LowerG);
Find(r, q, LowerG);
(* Use fast convolution for polynomial products *

'I,q(W)= *%7 r 1 (W)I',q(W)

end

procedure Apply (p, r, q: index; G: GENERATORS; var LowerG: GENERATORS);
begin

(* Use fast convolution for polynomial products *
Xr:q(Z) :=Xp:q(Z)®Ff0.r -I 1(Z);

LowerG: {X:q(Z), Yr:q(W)}
Free the storage Of I{Xgrq(Z), Y,.q(W)}1;

return (LowerG);
end
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